VENTS VUT R TN H EC-Serie VENTS VUT R TN EH EC-Serie

Lüftungsanlagen im schall- und wärmeisolierten Gehäuse mit einem Rotationswärmetauscher und einer eingebauten Wärmepumpe, mit einer Luftförderleistung von bis zu 955 m³/h und einer Effizienz der Wärmerückgewinnung von bis zu 85%.

HEIZUNG

KÜHLUN

Zweistufiges Energiesparen:

Stufe 1. Rückgewinnung der Wärmeenergie mit dem Rotationswärmetauscher mit der Effizienz der Wärmerückgewinnung von **bis zu 85%**.

Vorteile:

- Hohe Energieeffizienz.
- Niedriger Energieverbrauch.

Stufe 2. Erwärmung der Außenluft mit der Wärmepumpe dank der Nutzung der Niedrigtemperaturwärme der Abluft.

- Energiesparende Lösung.
- hohes Komfortniveau.

Beschreibung

Die Lüftungsanlagen VUT RTN H EC/VUT RTN EH EC sind die vollständigen Lüftungsanlagen für die Luftfilterung, Frischluftzufuhr und Abfuhr der verbrauchten Luft.

Die Abluftwärme wird an den Außenluftstrom im Rotationswärmetauscher übertragen. Das Lüftungssystem mit einem Rotationswärmetauscher und einer Wärmepumpe liefert die frische Luft, die bis zur Wohltemperatur erhitzt ist. Dadurch wird auch das Heiz- oder Kühlsystem entlastet.

Der gemeinsame Betrieb der Wärmepumpe und des Rotationswärmetauschers ergibt das Verhältnis der erzeugten und der verbrauchten Energie 1:8, d.h. 1kW der Stromversorgung ergibt 8 kW der Wärmeleistung. Kompatibel mit Lüftungsrohren mit Durchmesser 160 oder 250 und mm.

Modifikationen

VUT R TN H EC sind die Modelle mit einem Rotationswärmetausher und einer Wärmepumpe, ohne Vorheizung.

VUT R TN EH EC sind die Modelle mit einem Rotationswärmetausher, einer Wärmepumpe und mit einer Vorheizung.

■ Gehäuse

Das doppelwandige Gehäuse aus Aluzink, von innen wärme- und schallisoliert mit einer 25 mm dicken Glaswollenschicht für eine zuverlässige Schall- und Wärmedämmung. Dank der speziellen abnehmbaren Seitenblenden bedarf die Lüftungsanlage wenig Wartungsplatz und hat einen bequemen Wartungszugang zu den Bestandteilen.

Filter

Zwei eingebaute Panelfilter mit der Filterklasse G4 sichern Zu- und Abluftfilterung. Optional kann ein Zuluftfilter mit der Filterklasse F7 installiert werden.

Motor

Hocheffiziente elektronisch kommutierte Außenläufer-Gleichstrommotoren mit rückwärts gekrümmten Laufradschaufeln. Die EC Motoren bieten die fortschrittlichste Lösung für Energieeinsparung. EC Motoren zeichnen sich durch hohe Förderleistung und komplett steuerbaren Drehzahlbereich aus. Die hohe Effizienz bis

Bezeichnungsschlüssel:

Serie	Wärmetauschertyp	Nennförderleistung, m³/h	Modifikation	Vorheizung	Stutzenanordnung	Motortyp	Bedienpult
VENTS VUT	R – Rotationswärmetau- scher	400; 700; 900	TN – Wärme- pumpe	_ – keine; E – Elektro- Heizregister	H – horizontal	EC – elektronisch kommutierter Synchronmotor	A17 – th-Tune; A18 – pGD1

Zubehör

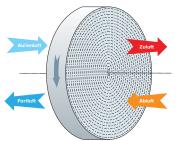
Seite 378

Seite 378

Seite 442

Seite 447

Seite 452 Seite


te 498 Seite

zu 90% ist ein entscheidender Vorteil der elektronisch gesteuerten Motoren.

Rotationswärmetauscher

Der Rotationswärmetauscher ist ein rotierender kurzer Zylinder, von innen mit Riffelaluminium gefüllt. Die Aluminiumplatten sind so verlegt, dass die Zu- und Abluft durch den Rotationswärmetauscher strömen. Beim Drehen des Rotationswärmetauschers kommt das Aluminium-Band zuerst in Verbindung mit dem Zuluftstrom und dann mit dem Abluftstrom. Das Aluminium-Band wird abwechselnd erhitzt und abgekühlt und dabei wird die Abluftwärme und Abluftfeuchte an den Außenluft übergeben.

Der Rotationswärmetauscher übergibt eine sensible und latente Abluft-Wärmeenergie und teilweise Abluftfeuchte an die kalte Außenluft. Der Wärmetauscher hat eine niedrige Vereisungsgefahr, die bei Nenntemperaturen und Nennfeuchtigkeit fast ausgeschlossen ist.

Wirkungsweise des Rotationswärmetauschers

Wärmepumpe

Die Lüftungsanlage ist mit einem hocheffizienten und geräuscharmen Rotationskompressor versehen und mit einer reversierenden Wärmepumpe zur Luftheizung oder Luftkühlung ausgestattet. Das Kühlmittel R410A wird als ein Betriebsmittel in der Wärmepumpe verwendet. R410A ist ein Zweikomponenten-Kühlmittel mit hohen thermodynamischen und umweltfreundlichen Eigenschaften. R410A ist nicht schädlich für die Ozonschicht.

Der hocheffizienter Rotationswärmetauscher übernimmt die Wärmerückgewinnung aus der Abluft zur

Erwärmung der Außenluft. Die Wärmetauscher übergibt den Rest der Niedrigtemperaturwärme des Abluftstroms an die Außenluftstrom und erhält somit die eingestellte Raumtemperatur.

Heizregister

Das Modell **VUT R TN EC** ist mit einem Kaltleiter-Elektro-Heizregister versehen zum Vorheizung der Außenluft bei niedrigen Temperaturen. Die Vorheiz-Technologie reduziert die Einschalthäufigkeit der Schichtabtauung der Wärmepumpe, wodurch sich die Betriebseffizienz der Lüftungsanlage erhöht. Das Heizregister besteht aus zwei Bestandteilen, wodurch wird der Energieverbrauch wesentlich reduziert und dabei eine hohe Heizleistung erreicht.

Steuerung und Automatisierung

Die Lüftungsanlage verfügt über eine integrierte Steuerung und ein multifunktionales Bedienpult **A17** (th-Tune) oder **A18** (pGD1).

Bedienpult A18

Ein 10 m Kabel zum Anschluss des Bedienpultes ist in der Standardlieferung enthalten.

Die drei Basis-Betriebsarten der Lüftungsanlage:

Auto Betrieb:Der automatische Betrieb sichert die Be- und

Lufttemperatur.

*

Heizbetrieb:

Der Heizbetrieb sichert die Be- und Entlüftung und Erhaltung der eigestellten

Entlüftung und Erhaltung der eigestellten

Lufttemperatur. Falls die Raumlufttemperatur unter den Einstellwert fällt, werden der Wärmetauscher und die Wärmepumpe für den Heizbetrieb aktiviert.

Kühlbetrieb:

Der Heizbetrieb sichert die Be- und Entlüftung und Erhaltung der eigestellten

Lufttemperatur. Falls die Raumlufttemperatur über

den Einstellwert steigt, werden der Rotationswärmetauscher und die Wärmepumpe für den Kühlbetrieb aktiviert.

Wärmerückgewinnungsbetrieb:

Der Heizbetrieb sichert die Be- und Entlüftung und Erhaltung der eigestellten Lufttem-

peratur mit Hilfe des Rotationswärmetauschers und die Wärmepumpe wird dabei nicht aktiviert. Der Wärmerückgewinnungsbetrieb wird aktiviert beim Betrieb der Lüftungsanlage in Auto-Betrieb, Heizbetrieb, Kühlbetrieb, falls die eingestellte Raumtemperatur kann nur mit der Wärmerückgewinnung erreicht werden und die Aktivierung der Wärmepumpe ist nicht erforderlich.

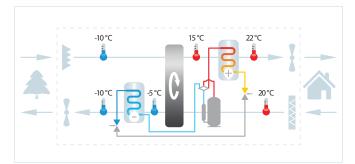
Der Lüftungsbetrieb sichert die Be- und Entlüftung und keine Lufttemperaturerhaltung.

Der Wärmetauscher und die Wärmepumpe sind nicht aktiviert. Die Temperatureinstellung ist nicht vorgesehen. Der Lüftungsbetrieb ist verfügbar nur im Falle der Verwendung des Bedienpultes **A18** (pGD1).

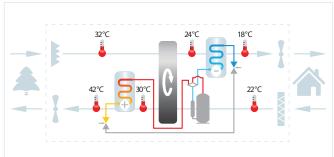
Abtaubetrieb:

Der Abtaubetrieb wird automatisch, nach dem Ablauf einer eingestellten Zeitdauer

oder beim Erreichen der eingestellten Lufttemperatur während des Betriebs der Lüftungsanlage in Auto-Betrieb oder Heizbetrieb zur Vorbeugung einer Vereisung der Wärmepumpe. Die Ventilatoren funktionieren im Abtaubetrieb nicht. Nach der Beendigung des Abtaubetriebs schaltet die Lüftungsanlage in den vorigen Betrieb zurück ein.


•米

Vorheizungsbetrieb:


Beim Betrieb der Lüftungsanlage im Autooder Heizbetrieb und der niedrigen Außen-

lufttemperaturen wird die Außenluft durch das Elektro-Heizregister erwärmt. Der Vorheizungsbetrieb wird aktiviert sobald die Außenlufttemperatur unter -8 °C sinkt. Wenn die Außenlufttemperatur über -8 °C steigt, schaltet der Vorheizungsbetrieb aus.

Dieser Betrieb ist vorhanden nur für die Lüftungsanlage mit einem Elektro-Heizregister **VUT R TN EH EC**. Der Elektro-Heizregister ist als Sonderzubehör erhältlich und ist im Gehäuse der Lüftungsanlage auszu-

Lüftung mit Wärmerückgewinnung und Luftvorheizung

Lüftung mit Wärmerückgewinnung und Luftkühlung

stellen. Die Montage ist nur von einem vom Hersteller autorisierten Kundendienst auszuführen.

Umluftbetrieb:

Der Umluftbetrieb ist möglich, falls die Lüftungsanlage mit einer externen Umlauft-Luft-

klappe (Sonderzubehör) ausgestattet wird. Der Umluftbetrieb wird aktiviert, wenn die Außenlufttemperatur unter 0 °C ist. Der Umluftbetrieb minimiert den Energieverbraucht dank der teilweisen Rückkehr der Abluft in das Zuluftrohr.

Systeme der intelligenten Steuerung:

${\bf Limit funktion \hbox{-} Technologie (Limit Function):}$

Automatische Drosselung des Luftdurchsatzes zur Erhaltung der eingestellten Lufttempera-

tur. Falls die eingestellte Raumtemperatur innerhalb von 20 Min. im Auto- oder Heizbetrieb kann nicht erreicht werden, dann wird der Luftdurchsatz (Geschwindigkeit) automatisch gedrosselt. Sobald die Zulufttemperatur bis zum Einstellwert steigt, kehren die Ventilatoren in die vorige Betriebsart zurück. Der Luftdurchsatz kann im Betrieb «Limit Function» nicht geändert werden..

Erwärmungs-Technologie (Warming-up):

Vorbeugung des Eindringens von Kaltluft im Auto- oder Heizbetrieb durch die Erwärmung

des Wärmetauschers der Wärmepumpe im Zuluftkanal der Lüftungsanlage beim Ventilatorstillstand. Der Warming-up-Betrieb wird nach dem Abtaubetrieb und nach dem ersten Start aktiviert, wenn die Außenlufttemperatur unter +10 °C ist. Nach der Beendigung des Warming-up-Betriebs kehrt die Lüftungsanlage in den Auto- oder Heizbetrieb.

Higher Speed-Technologie:

Automatische Steuerung der Abluftgeschwindigkeit beim Kühlbetrieb dient dem Schutz

der Wärmepumpe gemäß dem Druck. Nach dem Druckfall wird die Abluftgeschwindigkeit zum vorigen Wert gedrosselt.

Smart Safe-Technologie:

Automatischer Schutz der Lüftungsanlage gegen Betrieb außerhalb der Betriebsparameter.

Die Lüftungsanlage ist mit einem intelligenten Schutz zum sicheren und zuverlässigen Betrieb der Geräte innerhalb von zulässigen Umgebungstemperaturgrenzen versehen. Falls die Betriebsparameter von den Nennparameter abweichen, wird der Betrieb der Lüftungsanlage entsprechend gesteuert oder einige Einheiten und Geräte werden ausgeschaltet, um einen Betriebsausfall zu vermeiden.

Heat Pump Protection-Technologie:

Automatischer Alarmschutz der Wärmepumpe:

Schutz der Wärmepumpe gegen Niederoder Hochdruck. Wenn der Druck des Kühlmittels über den Betriebsbereich hinausgeht, geben die Drucksensore ein Signal an die Steuereinheit und die Stromversorgung vom Pumpenkompressor wird abgeschaltet. Nach der Normalisierung des Drucks wird die Stromversorgung wieder hergestellt.

- b Überhitzungstemperaturschutz des Kompressors. Wenn die Temperatur vom Kompressorgehäuse über den Einstellwert ist, wird die Stromversorgung an den Kompressor abgeschaltet. Nach der Normalisierung der Temperatur wird die Stromversorgung wieder hergestellt.
- ▶ Zeitvorwahl-Technologie. Schutz gegen zyklische Arbeit des Kompressors (häufiges Ein-/Ausschalten des Kompressors wird gesperrt).

Dank der implementierten Designlösungen ist ein bequemer Zugang an die Geräte und Einheiten der Lüftungsanlage, eine einfache Wartung, Wechseln der Ersatzteile und eine hohe Reparaturfähigkeit der Lüftungsanlage gesichert.

Frische Luft-Technologie (Fresh Air):

Diese Technologie gewährleistet die Zufuhr von Frischluft in den Raum. Die Lüftungsan-

lage ist mit den Filtern mit der Filterklasse G4 (Optional F7) ausgestattet. Der Betriebsstundenzähler verfolgt die Betriebsdauer der Filter und meldet den anstehenden Filterwechsel.

Das Kühlmittel R410A wird als ein Betriebsmittel in der Wärmepumpe verwendet. R410A ist ein Zweikomponenten-Kühlmittel mit hohen thermodynamischen und umweltfreundlichen Eigenschaften. R410A ist nicht schädlich für die Ozonschicht.

Save Energy-Technologie:

Das Paket von ingenieurtechnischen Lösungen zur Minimierung des Energiebedarfes:

- ► Kaltleiter-Elektro-Heizregister zur Vorheizung mit zwei aktiven Elementen.
- Verstärkte Wärmedämmung der Zuluftkammer.
- Eingebaute hocheffiziente Luft-Luft-Wärmepumpe.
- Regelbare Geschwindigkeit der Ventilatoren.
- Automatisches Ein-/Ausschalten der Rotationswärmetauschers und der Wärmepumpe.
- Sperren der Heizregisterarbeit im Abtaubetrieb
- Dank der Intelligent-Vents-Software und deren exklusiven Steueralgorithmen werden die optimale Betriebsparameter und einen niedrigen Energiebedarf erreicht.

Low Noise (Geräuscharm)-Technologie:

Das Paket von ingenieurtechnischen Lösungen zur Minimierung des Geräuschpegels:

- Die Wärmepumpe ist im geräuschisolierten Gehäuse eingebaut.
- Die Ventilator hat eine steuerbare Drehzahl.
- Geräuscharmer rotierender Kompressor.

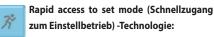
Autorestart (Auto-Restart) -Technologie:

Die Lüftungsanlage speichert den eingestellten Betrieb im Falle eines Stromausfalles.

Simple Use (Einfache Verwendung) -Technologie:

Die Lüftungsanlage wird als ein komplettes und betriebsbereites Gerät mit einem minimalen Mon-

tage- und Betriebsaufwand geliefert. Die intuitiv bedienbare Steuerungsschnittstelle bedarf keiner besonderen Qualifikation vom Bediener.


CO, Control (CO, Kontrolle)-Technologie:

Erhaltung der CO₂ Konzentration in einem belüfteten Raum auf einem Einstellwert. Wenn die

CO₂ Konzentration über den Einstellwert steigt, erhöht sich die Luftaustauschrate. Die Option ist verfügbar nur im Falle der Montage des externen CO₂ Sensors mit einem Ausgang-Steuersignal 0-10 V (Sonderzubehör).

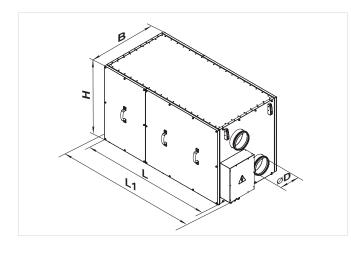
Erhaltung der Raumfeuchtigkeit in einem belüfteten Raum auf einem minimalen Einstellwert. Wenn die Raumfeuchtigkeit über den Einstellwert steigt, erhöht sich die Luftaustauschrate. Die Option ist verfügbar nur im Falle der Montage der Sonderausführung des Bedienpultes A17 (th-Tune) oder des externen Feuchtigkeitssensors mit einem Ausgang-Steuersignal 0-10 V (Sonderzubehör).

Je mehr die Differenz zwischen der Umgebungs- und der Einstelltemperatur ist, desto schneller wird die Wärmepumpe aktiviert.

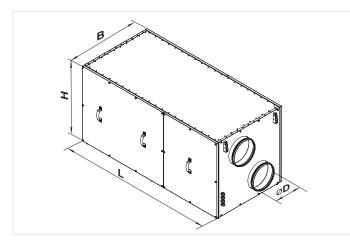
Montage

Die Lüftungsanlage ist für die Montage auf der horizontalen Oberfläche, für die Deckenmontage oder für die Befestigung an der Wand mit Hilfe des Montagewinkels bestimmt. Der Wartungszugang ist über die Seitenplatte.

Funktionalität der Bedienpulte


Funktionen	Bedienpult A17 (th-Tune)	Bedienpult A18 (pGD1)
Ein- und Ausschalten der Lüftungsanlage	\checkmark	✓
Einstellung der Ventilatordrehzahl	\checkmark	\checkmark
Einstellung der Betriebsart der Lüftungsanlage	\checkmark	\checkmark
Temperature instellung	\checkmark	\checkmark
Einstellung des Programmierbetriebs der Lüftungsanlage	\checkmark	\checkmark
Programmierung des planmäßigen Betriebs.	\checkmark	\checkmark
Überwachung der Temperaturen:	\checkmark	\checkmark
 Raumtemperatur 	\checkmark	\checkmark
 Zulufttemperatur 	\checkmark	\checkmark
• Einstelltemperatur	\checkmark	✓
• Einstelltemperatur des Auftausensors	×	\checkmark
 Lufttemperatur hinter dem Wärmetauscher 	×	✓
 Außenlufttemperatur 	×	\checkmark
Änderung der standardmässigen Benutzereinstellungen	×	✓
Änderung der standardmässigen ver- fahrenstechnischen Einstellungen	x	√*

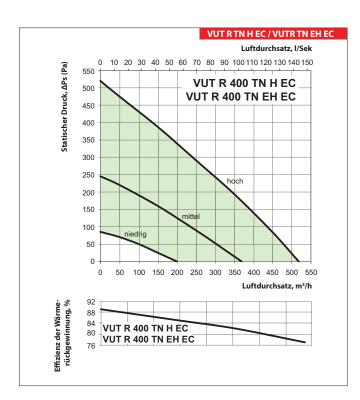
^{*} passwortgeschützt

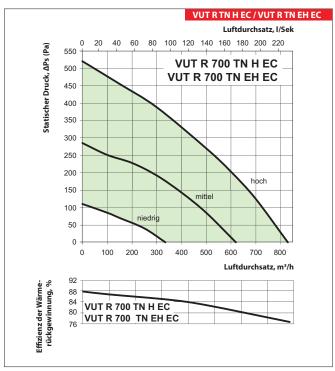

Außenmaße:

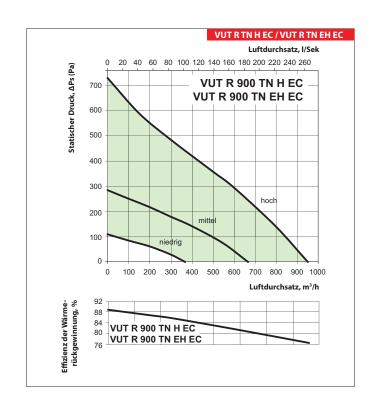
Modell			Maße, mm		
Modeli	ØD	В	Н	L	L1
VUT R 400 TN H EC / 400 TN EH EC	159	648	710	1250	1421
VUT R 700 TN H EC / 700 TN EH EC	249	748	750	1667	-
VUT R 900 TN H EC / 900 TN EH EC	249	748	750	1667	_

VUT R 400 TN H EC VUT R 400 TN EH EC

VUT R 700 TN H EC / VUT R 700 TN EH EC VUT R 900 TN H EC / VUT R 900 TN EH EC

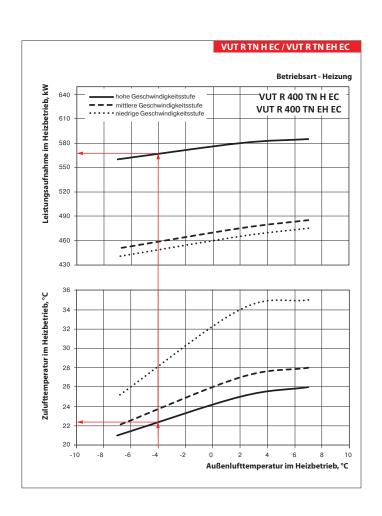

Zubehör für Lüftungsanlagen:


Modell	Wechsel-Plattenfilter, Filterklasse G4	Wechsel-Taschenfilter, Filterklasse G4	Wechsel-Taschenfilter, Filterklasse F7
VUT R 400 TN H EC / 400 TN EH EC	SF VUT R 400 TN H/EH G4	SFK VUT R 400 TN H/EH G4	SFK VUT R 400 TN H/EH F7
VUT R 700 TN H EC / 700 TN EH EC	SF VUT R 700-900 TN H/EH G4	SFK VUT R 700-900 TN H/EH G4	SFK VUT R 700-900 TN H/EH F7
VUT R 900 TN H EC / 900 TN EH EC	3F VOT N 700-900 TN H7EH G4	3FN VOT N 700-900 HN H/EH G4	3FK VOT K / 00-900 IN H/EH F/


Technische Daten:

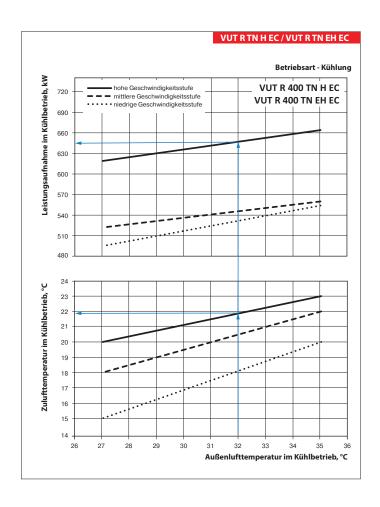
		VUT R 400 TN H EC	VUT R 700 TN H EC	VUT R 900 TN H EC	VUT R 400 TN EH EC	VUT R 700 TN EH EC	VUT R 900 TN EH EC		
	Allger	neine Kennda	aten						
	Förderleistung, m³/h	520	830	955	520	830	955		
	$F\"{o}rder mittel temperatur, {}^{\circ}C$		-10+40			-25+40			
	Effizienz der Wärmerückgewinnung, %		bis zu 85						
	Schalldruck 3 m, dB(A)	45	52	58	45	52	58		
	Gehäusematerial			Alu	zink				
	Gewicht, kg	150	160	165	150	160	165		
	Anschluss-Rohrdurchmesser, mm	160	250	250	160	250	250		
	Wärmetauschertyp			Rota	tions				
	Wärmetauschermaterial			Alum	inium				
Filter	Abluft			G	4				
Titel	Zuluft			G4 (F7*)				
	Elektr	rische Kennda	iten						
Vers	orgungsspannung Lüftungsanlage, V/Hz			1~	230				
Max. Leistungsaufnahm	ne im Wärmerückgewinnungsbetrieb, kW	0,31	0,36	0,46	0,31	0,36	0,46		
	eistungsaufnahme im Wärmerückgewin- ngsbetrieb + Wärmepumpenbetrieb, kW	0,745	0,94	1,195	0,745	0,94	1,195		
	ngsaufnahme im Wärmerückgewinnungs- Wärmepumpenbetrieb + Vorheizung, kW	+	+	-	2,145	3,74	3,995		
	Max. Stromaufnahme, A	4,6	5,7	6,7	10,9	18,5	19,4		
Energieeffizienz der	im Heizbetrieb (COP)	6	6,5	6,5	6	6,5	6,5		
Lüftungsanlage, A	im Kühlbetrieb (ERR)	4	4,15	4,25	4	4,15	4,25		
	Technische I	Daten der Wäi	mepumpe						
	Kühlmittel			R4	10A				
	Gewicht des Kühlmittels, kg	0,8	1,6	2	0,8	1,6	2		
	Heizleistung im Heizbetrieb, kW bei $t_0 = +7$ °C; $t_k = +45$ °C**	1,56	2,6	3,25	1,56	2,6	3,25		
	Heizleistung im Kühlbetrieb, kW bei $t_0 = +7$ °C; $t_k = +45$ °C**	1,2	2	2,5	1,2	2	2,5		
	Kompressorbetrieb			Luftdicht	Rotations				
Einstelltempe	raturbereich im Heiz- und Kühlbetrieb, °C			+16	+30				

^{*} Option; ** t_0 ist die Siedetemperatur des Kühlmittels; t_k ist die Kondensationstemperatur des Kühlmittels.



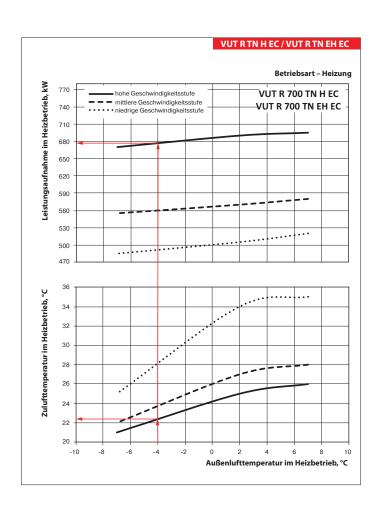
Technische Daten der Wärmepumpe im Heizbetrieb:

					VUT R 40	OOTN HEC/	VUT R 40	OO TN EH EC						
tufe	Luftdurd	hsatz	Raumluft	temperatur, °C		nlufttem- ratur, °C	Zuluftt	emperatur, °C						
Geschwindigkeits stufe	% von max.	m³/h	Trockenther- mometer	Feuchtthermo- meter (RF)	Feuchtthermo- meter (RF) Trockenther- mometer Feuchtthermo- meter (RF) Trockenther- mometer		Feuchtthermo- meter (RF)	Leistungsauf- nahme, kW	COP*, W/W	COP*, BTU/W	Q _{Heiz'} kW			
hoch	100	400	20				26	14 (~25%)	0,585	4,3	14,8	2,53		
mittel	70	280		20	20	20	12 (~38%)	7	6 (~86%)	28	15 (~23%)	0,485	4	13,8
niedrig	40	160					35	17 (~14%)	0,475	3,1	10,7	1,49		
hoch	100	400					25	12 (~18%)	0,58	5,3	18	3,07		
mittel	70	280	20	12 (~38%)	2	1 (~80%)	27	13 (~17%)	0,475	4,9	16,8	2,33		
niedrig	40	160					34	16 (~12,5%)	0,465	3,7	12,5	1,71		
hoch	100	400	20				21	8 (~8%)	0,56	7,1	24,4	4		
mittel	70	280		12 (~38%)	-7	-8 (~70%)	22	9 (~8%)	0,45	6,4	21,9	2,89		
niedrig	40	160					25	10 (~8%)	0,44	4,1	14,1	1,81		


^{*} Achtung! Die hygrothermische Berechnung des angegebenen Temperaturparameter, COP und ERR Werte erfolgt gemäß EN 13141 -7:2010. Die Kalkulation der Kennwerte gilt für den Dauerbetrieb der Wärmepumpe ohne Rücksicht auf zyklische Arbeit des Kompressors.

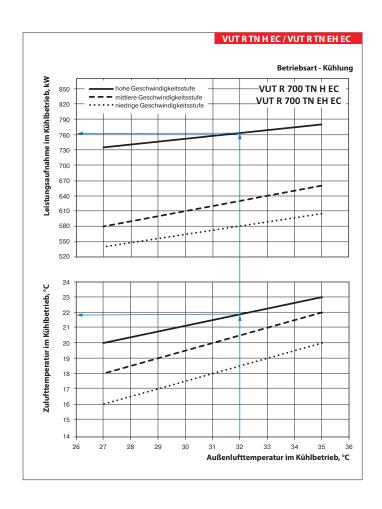
Technische Daten der Wärmepumpe im Kühlbetrieb:

	VUT R 400 TN H EC / VUT R 400 TN EH EC													
sstufe	Luttdurchsatz			Raumlufttem- peratur, °C Außenlufttemperatur, °C		Zulufttemperatur, °C								
Geschwindigkeitsstufe	% von max.	m³/h	Trockenther- mometer	Feuchtthermo- meter (RF)	Trockenther- mometer	Feuchtthermo- meter (RF)	Trockenther- mometer Feuchtthermo- meter (RF)		Leistungsauf- nahme, kW	COP*, W/W	COP*, BTU/W	Q _{Heiz'} kW		
hoch	100	400				24 (~40%)	23	21 (~85%)	0,664	2,4	8,2	1,6		
mittel	70	280	27	19 (~47,5%)	35		22	20,5 (~85%)	0,560	2,2	7,4	1,21		
niedrig	40	160					20	19 (~90%)	0,554	1,8	6,2	1,01		
hoch	100	400					19	16,5 (~78%)	0,619	1,7	5,9	1,07		
mittel	70	280	27	19 (~47,5%)	27	19 (~47,5%)	18	15,5 (~78%)	0,522	1,6	5,5	0,84		
niedrig	40	160					15	14 (~88%)	0,495	1,6	5,5	0,8		


^{*} Achtung! Die hygrothermische Berechnung des angegebenen Temperaturparameter, COP und ERR Werte erfolgt gemäß EN 13141 -7:2010. Die Kalkulation der Kennwerte gilt für den Dauerbetrieb der Wärmepumpe ohne Rücksicht auf zyklische Arbeit des Kompressors.

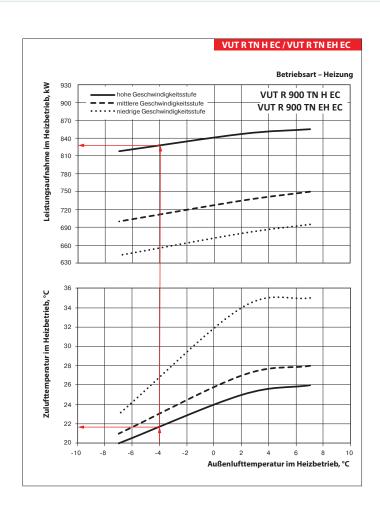
Technische Daten der Wärmepumpe im Heizbetrieb:

					VUT	R 700 TN H EC	/ VUT R 70	OO TN EH EC				
sstufe	Luftdurchsatz			mlufttem- eratur, °C	Außenlufttemperatur, °C		Zuluftte	mperatur, °C				
Geschwindigkeitsstufe	% von max.	m³/h	Trockenther- mometer Feuchtthermo- meter (RF)		Trockenther- mometer	Feuchtthermo- meter (RF)	Trockenther- mometer	Feuchtthermo- meter (RF)	Leistungsauf- nahme, kW	COP*, W/W	COP*, BTU/W	Q _{Heiz'} kW
hoch	100	700			7		26	14 (~25%)	0,695	6,4	21,8	4,43
mittel	70	490	20	12 (~38%)		6 (~86%)	28	15 (~23%)	0,58	5,9	20,2	3,43
niedrig	40	280					35	17 (~14%)	0,52	5,0	17,1	2,61
hoch	100	700					25	12 (~18%)	0,69	7,8	26,5	5,37
mittel	70	490	20	12 (~38%)	2	1 (~80%)	27	13 (~17%)	0,57	7,2	24,4	4,08
niedrig	40	280					34	16 (~12,5%)	0,505	5,9	20,2	2,99
hoch	100	700					21	8 (~8%)	0,67	10,4	35,6	7,00
mittel	70	490	20	12 (~38%)	-7	-8 (~70%)	22	9 (~8%)	0,555	9,1	31,1	5,06
niedrig	40	280					25	10 (~8%)	0,485	6,5	22,3	3,17


^{*} Achtung! Die hygrothermische Berechnung des angegebenen Temperaturparameter, COP und ERR Werte erfolgt gemäß EN 13141 -7:2010. Die Kalkulation der Kennwerte gilt für den Dauerbetrieb der Wärmepumpe ohne Rücksicht auf zyklische Arbeit des Kompressors.

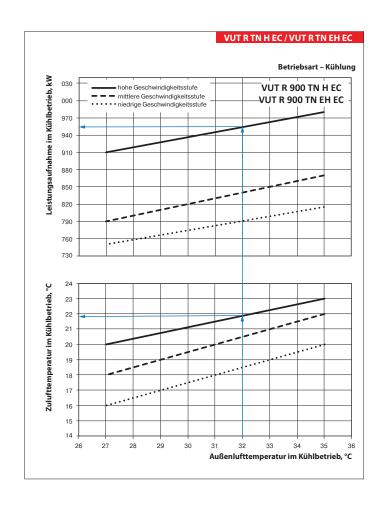
Technische Daten der Wärmepumpe im Kühlbetrieb:

	VUT R 700 TN H EC / VUT R 700 TN EH EC													
sstufe	Luftdurchsatz		Raumlufttem- peratur, °C		Außenlufttem- peratur, °C		Zulufttemperatur, °C							
Geschwindigkeitsstufe	% von max.	m³/h	Trockenther- mometer	Feuchtthermo- meter (RF)	Trockenther- mometer	Feuchtthermo- meter (RF)	Trockenther- mometer	Feuchtthermo- meter (RF)	Leistungsauf- nahme, kW	COP*, W/W	COP*, BTU/W	Q _{Heiz'} kW		
hoch	100	700					23	21 (~85%)	0,78	3,6	12,2	2,8		
mittel	70	490	27	19 (~47,5%)	35	24 (~40%)	22	20,5 (~85%)	0,66	3,2	11	2,12		
niedrig	40	280					20	19 (~90%)	0,605	2,9	10	1,77		
hoch	100	700					19	16,5 (~78%)	0,735	2,5	8,7	1,87		
mittel	70	490	27	19 (~47,5%)	27	19 (~47,5%)	18	15,5 (~78%)	0,58	2,5	8,6	1,47		
niedrig	40	280				, ,,,,	15	14 (~88%)	0,54	2,2	7,7	1,21		


^{*} Achtung! Die hygrothermische Berechnung des angegebenen Temperaturparameter, COP und ERR Werte erfolgt gemäß EN 13141 -7:2010. Die Kalkulation der Kennwerte gilt für den Dauerbetrieb der Wärmepumpe ohne Rücksicht auf zyklische Arbeit des Kompressors.

Technische Daten der Wärmepumpe im Heizbetrieb:

					VUT R 900	TN H EC / VUT	R 900 TN	EH EC														
sstufe	Luftdurchsatz		Raumlufttemperatur, °C		Außenlufttemperatur, °C		Zuluftte	emperatur, °C														
Geschwindigkeits stufe	% von max.	m³/h	Trockenther- mometer	Feuchtthermo- meter (RF)	Trockenther- mometer	Feuchtthermo- meter (RF)	Trockenther- mometer	Feuchtthermo- meter (RF)	Leistungsauf- nahme, kW	COP*, W/W	COP*, BTU/W	Q _{Heiz'} kW										
hoch	100	900					26	14 (~25%)	855	6,7	22,7	5,70										
mittel	70	630	20	20	20	20	20	20	20	20	20	20	20	12 (~38%)	7	6 (~86%)	28	15 (~23%)	750	5,9	20,1	4,41
niedrig	40	360					35	17 (~14%)	695	4,8	16,5	3,36										
hoch	100	900					25	12 (~18%)	847	8,1	27,8	6,90										
mittel	70	630	20	12 (~38%)	2	1 (~80%)	27	13 (~17%)	735	7,1	24,4	5,25										
niedrig	40	360					34	16 (~12,5%)	680	5,6	19,3	3,84										
hoch	100	900	20				20	8 (~8%)	818	11,0	37,5	9,00										
mittel	70	630		12 (~38%)	-7	-8 (~70%)	21	9 (~8%)	700	9,3	31,7	6,51										
niedrig	40	360					23	10 (~14%)	643	6,3	21,7	4,08										


^{*} Achtung! Die hygrothermische Berechnung des angegebenen Temperaturparameter, COP und ERR Werte erfolgt gemäß EN 13141 -7:2010. Die Kalkulation der Kennwerte gilt für den Dauerbetrieb der Wärmepumpe ohne Rücksicht auf zyklische Arbeit des Kompressors.

Technische Daten der Wärmepumpe im Kühlbetrieb:

	VUT R 900 TN H EC / VUT R 900 TN EH EC													
sstufe	Luftdu	uftdurchsatz		Raumlufttem- peratur, °C Außen		ußenlufttemperatur, °C		mperatur, °C						
Geschwindigkeitsstufe	% von max.	m³/h	Trockenther- mometer	Feuchtthermo- meter (RF)	Trockenther- mometer Feuchtthermo- meter (RF) Trockenther- mometer		Feuchtthermo- meter (RF)	Leistungsauf- nahme, kW	COP*, W/W	COP*, BTU/W	Q _{Heiz'} kW			
hoch	100	900					23	21 (~85%)	0,98	3,7	12,5	3,6		
mittel	70	630	27	19 (~47,5%)	35	24 (~40%)	22	20,5 (~85%)	0,87	3,1	10,7	2,73		
niedrig	40	360					20	19 (~90%)	0,815	2,8	9,5	2,28		
hoch	100	900					19	16,5 (~78%)	0,91	2,6	9	2,4		
mittel	70	630	27	19 (~47,5%)	27	19 (~47,5%)	18	15,5 (~78%)	0,79	2,4	8,2	1,89		
niedrig	40	360					15	14 (~88%)	0,75	2,1	7,1	1,56		

^{*} Achtung! Die hygrothermische Berechnung des angegebenen Temperaturparameter, COP und ERR Werte erfolgt gemäß EN 13141 -7:2010. Die Kalkulation der Kennwerte gilt für den Dauerbetrieb der Wärmepumpe ohne Rücksicht auf zyklische Arbeit des Kompressors.

