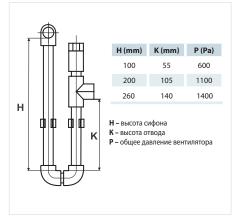
ОХЛАДИТЕЛИ ФРЕОНОВЫЕ

Серия **ОКФ**



Серия **ОКФ1**

сата, срывающихся с трубок охладителя потоком охлаждаемого воздуха. При выборе охладителя необходимо учитывать, что каплеуловитель эффективно улавливает конденсат при скорости воздуха не превышающей 4 м/с.

 Для отвода конденсата необходимо использовать сифон. Высота сифона напрямую зависит от общего давления вентилятора. Высоту сифона можно расчитать по указанным ниже рисунка и таблицы.

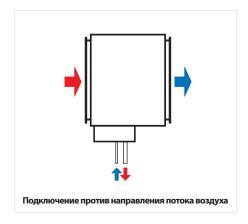
• Для правильной и безопасной работы охладителей рекомендуется применять систему автоматики, обеспечивающую комплексное управление и автоматическую регулировку холодопроизводительности и температуры охлаждения воздуха.

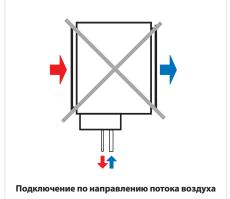
Применение

Канальные воздухоохладители с прямым испарительным охлаждением предназначены для охлаждения приточного воздуха в системах вентиляции прямоугольного сечения. Также могут использоваться в качестве охладителя в приточных или приточно-вытяжных установках.

Конструкция

Фреоновые охладители выпускаются в двух модификациях – ОКФ и ОКФ1. Охладитель ОКФ1 имеет упрощенную конструкцию.


Корпус охладителя выполнен из оцинкованной стали, трубные коллекторы изготовлены из медных труб, поверхность теплообмена – из алюминиевых пластин. Охладители выпускаются в 3-х рядном исполнении и предназначены для эксплуатации с хладагентами R123, R134a, R152a, R404a, R407c, R410a, R507, R12, R22, R32. Охладитель оборудован каплеуловителем и дренажным поддоном для сбора и отвода конденсата.


Базовое исполнение стороны обслуживания в охладителях ОКФ и ОКФ1 – правостороннее по направлению потока воздуха. В охладителе серии ОКФ можно поменять сторону обслуживания, развернув теплообменник на 180°. В охладителях серии ОКФ1 такая возможность не предусмотрена.

Монтаж

 Монтаж охладителя осуществляется с помощью фланцевого соединения. Охладители прямого испарения могут устанавливаться только в горизонтальном положении, позволяющем произвести отвод конденсата.

- Охладитель рекомендуется устанавливаться так, чтобы воздушный поток был равномерно распределен по всему сечению.
- Перед охладителем должен быть установлен воздушный фильтр, защищающий от загрязнения.
- Охладитель может устанавливаться перед вентилятором или за ним. Если охладитель находится за вентилятором, рекомендуется предусмотреть между ними воздуховод длиной не менее 1-1,5 м для стабилизации воздушного потока.
- Охладитель необходимо подключать по принципу противотока для достижения максимальной холодопроизводительности. Все расчетные номограммы в каталоге действительны для такого подключения.
- Каплеуловитель из полипропиленового профиля предотвращает попадание в канал капель конден-

Условное обозначение

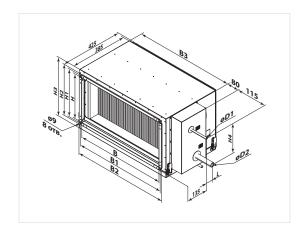
Серия

ΟΚΦ/ΟΚΦ1

Размер фланца (ШхВ), мм

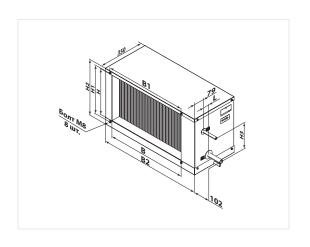
400x200; 500x250; 500x300; 600x300; 600x350; 700x400; 800x500; 900x500; 1000x500

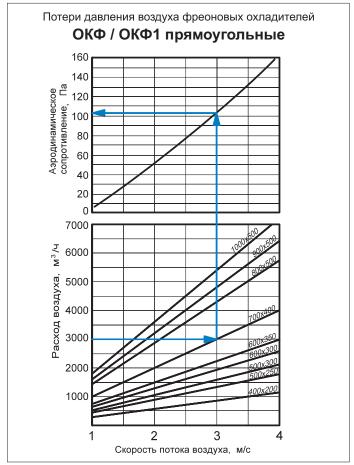
Количество рядов трубок

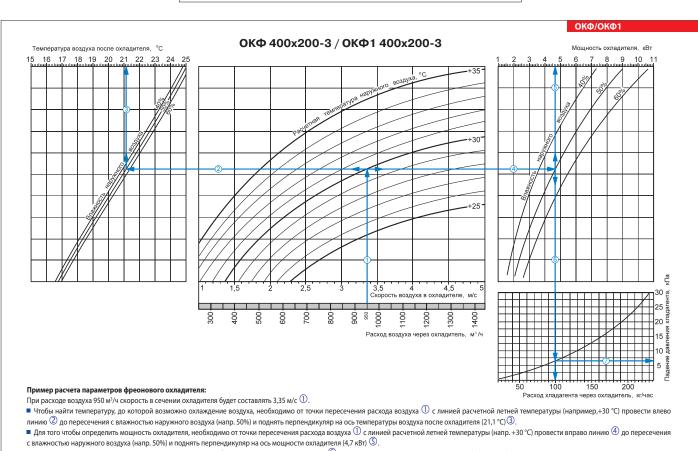

3

Исполнение (для ОКФ1)

_: правостороннее Л: левостороннее

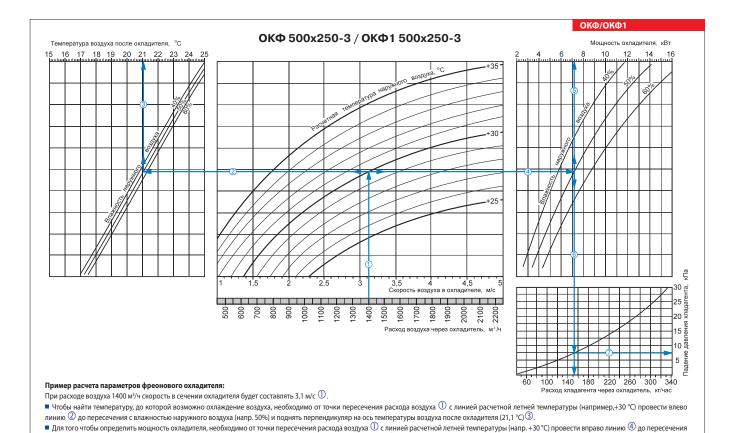

Габаритные размеры изделий


Тип		Размеры, мм										
	В	B1	B2	В3	Н	H1	H2	H3	H4	L	D1	D2
ОКФ 400х200-3	400	420	440	470	200	220	240	295	103	44	12	22
ОКФ 500x250-3	500	520	540	570	250	270	290	345	155	44	12	22
ОКФ 500х300-3	500	520	540	570	300	320	340	395	210	33	12	22
ОКФ 600х300-3	600	620	640	670	300	320	340	395	199	44	18	28
ОКФ 600х350-3	600	620	640	670	350	370	390	445	199	44	18	28
ОКФ 700х400-3	700	720	740	770	400	420	440	495	224	44	22	28
ОКФ 800х500-3	800	820	840	870	500	520	540	595	340	44	22	28
ОКФ 900х500-3	900	920	940	970	500	520	540	595	340	44	22	28
OKΦ 1000x500-3	1000	1020	1040	1070	500	520	540	595	325	44	22	28



Габаритные размеры изделий

Тип	Размеры, мм										
	В	B1	B2	Н	H1	H2	НЗ	L	D1	D2	
ОКФ1 400х200-3	400	420	580	200	220	270	103	44	12	22	
ОКФ1 500х250-3	500	520	680	250	270	320	155	44	12	22	
ОКФ1 500х300-3	500	520	680	300	320	370	210	33	12	22	
ОКФ1 600х300-3	600	620	780	300	320	370	199	44	18	28	
ОКФ1 600х350-3	600	620	780	350	370	420	199	44	18	28	
ОКФ1 700х400-3	700	720	880	400	420	470	224	44	22	28	
ОКФ1 800х500-3	800	820	980	500	520	570	340	44	22	28	
ОКФ1 900х500-3	900	920	1080	500	520	570	340	44	22	28	
ОКФ1 1000х500-3	1000	1020	1180	500	520	570	325	44	22	28	



хладагента (6,5 кПа).

с влажностью наружного воздуха (напр. эото) и подпать перпендикуляр на ось мощности ословитель (т.т. выт) €.

Для определения расхода хладагента через охладитель необходимо опустить перпендикуляр ⓑ на ось расхода хладагента через охладитель (100 кг/час).

Для определения падения давления хладагента в охладитель необходимо найти точку пересечения линии ⑥ с графиком потери давления и провести вправо перпендикуляр ⑦, на ось падения давления

ОКФ 500х300-3 / ОКФ1 500х300-3 Мощность охладителя, кВт 20 +25 4 4,5 воздуха в охладителе, м/с 50 2000 20 🖁 10адение 150 200 250 300 350 400 100 Пример расчета параметров фреонового охладителя: При расходе воздуха 2000 м³/ч скорость в сечении охладителя будет составлять 3,75 м/с

О.

🗖 Для определения падения давления хладагента в охладителе необходимо найти точку пересечения линии 🌀 с графиком потери давления и провести вправо перпендикуляр 🗇, на ось падения давления

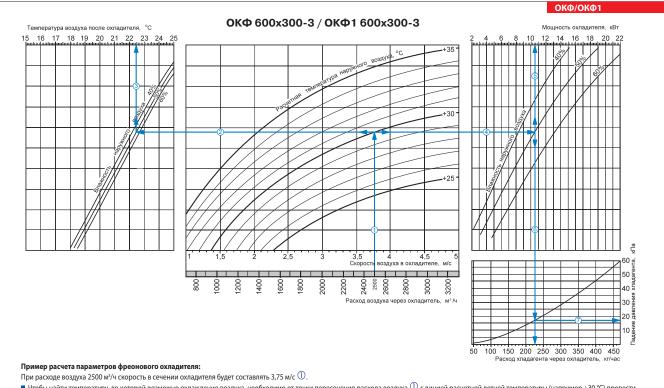
— для пои чтоком пределить мощноств охладителя, несоходимо от точни пересечении расметной дели петем температуры (напр. т. с влажностью наружного воздух а (напр. 50%) и поднять перпендикуляр на ось мощности охладителя (7,2 кВт) ⑥.

■ Для определения расхода хладагента через охладитель необходимо опустить перпендикуляр ⑥ на ось расхода хладагента через охладитель (152 кг/час).

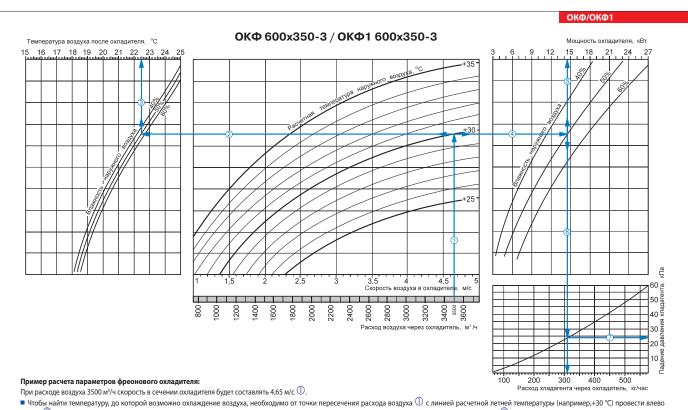
■ Чтобы найти температуру, до которой возможно охлаждение воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной летней температуры (например,+30 °C) провести влево

— пинио ② до пересечения с влажностью наружного воздуха (напр. 50%) и поднять перпендикуляр на ось температуры воздуха после охладителя (21,2 °○)③.

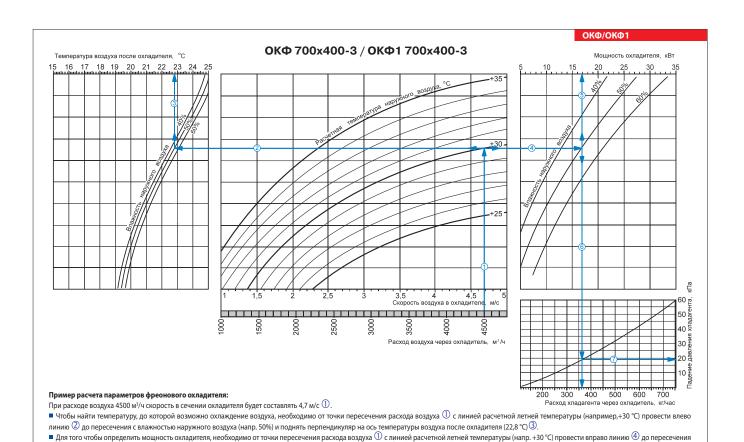
■ Для того чтобы определить мощность охладителя, необходимо от точки пересечения расхода воздуха ① с линией расчетной летней температуры (напр. +30 °С) провести вправо линию ④ до пересечения с влажностью наружного воздуха (напр. 50%) и поднять перпендикуляр на ось мощности охладителя (10 кВт) ⑤.


■ Для определения расхода хладагента через охладителя необходимо от точки пересечения расхода воздуха ① с линией расчетной летней температуры (напр. +30 °С) провести вправо линию ④ до пересечения с влажностью наружного воздуха (напр. 50%) и поднять перпендикуляр на ось мощности охладителя (10 кВт) ⑤.

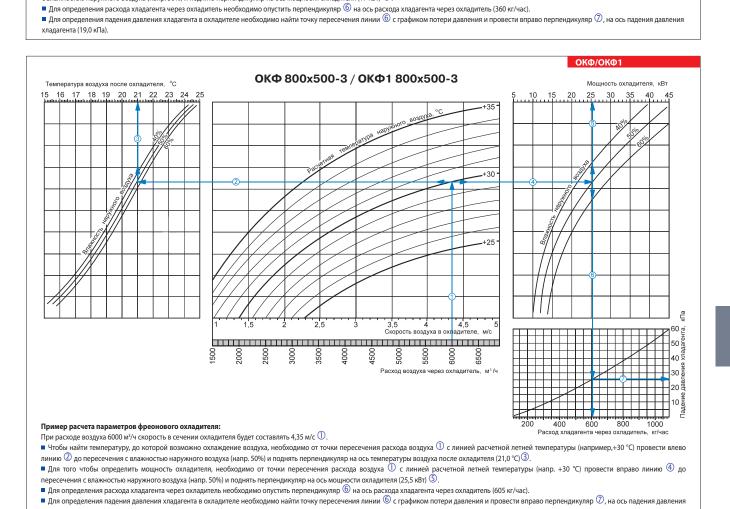
■ Для определения расхода хладагента через охладитель необходимо опустить перпендикуляр ⑥ на ось расхода хладагента через охладитель (215 кг/час).


■ Для определения падения давления хладагента в охладитель необходимо найти точку пересечения линии ⑥ с графиком потери давления и провести вправо перпендикуляр ⑦, на ось падения давления

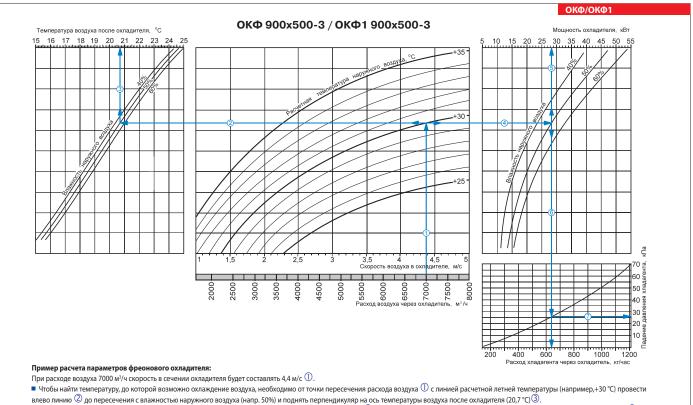
хладагента (16,0 кПа).


ОХЛАДИТЕЛИ ФРЕОНОВЫЕ

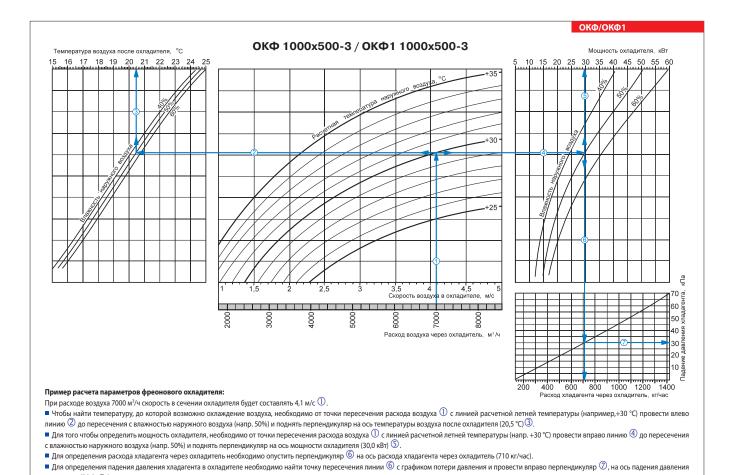
- Чтобы найти температуру, до которой возможно охлаждение воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной летней температуры (например,+30 °C) провести влево линию ② до пересечения с влажностью наружного воздуха (напр. 50%) и поднять перпендикуляр на ось температуры воздуха после охладителя (22,5 °C) ③.
- Для того чтобы определить мощность охладителя, необходимо от точки пересечения расхода воздуха ① с линией расчетной летней температуры (напр. +30 °C) провести вправо линию ④ до пересечения с влажностью наружного воздуха (напр. 50%) и поднять перпендикуляр на ось мощности охладителя (10,5 кВт) ⑤.
- Для определения расхода хладагента через охладитель необходимо опустить перпендикуляр (В на ось расхода хладагента через охладитель (225 кг/час).
 Для определения падения давления хладагента в охладитель необходимо найти точку пересечения линии (в) с графиком потери давления и провести вправо перпендикуляр (т), на ось падения давления хладагента (17 кПа).



- линию ② до пересечения с влажностью наружного воздуха (напр. 50%) и поднять перпендикуляр на ось температуры воздуха после охладителя (22,5 °C) ③.
- 🗷 Для того чтобы определить мощность охладителя, необходимо от точки пересечения расхода воздуха 🛈 с линией расчетной летней температуры (напр. +30 °C) провести вправо линию 🍳 до пересечения с влажностью наружного воздуха (напр. 50%) и поднять перпендикуляр на ось мощности охладителя (14,5 кВт) ⑤.
- Для определения расхода хладагента через охладитель необходимо опустить перпендикуляр (6) на ось расхода хладагента через охладитель (310 кг/час).
 Для определения падения давления хладагента в охладитель необходимо найти точку пересечения линии (6) с графиком потери давления и провести вправо перпендикуляр (7), на ось падения давления хладагента (24,0 кПа).



с влажностью наружного воздуха (напр. 50%) и поднять перпендикуляр на ось мощности охладителя (17 кВт) ⑤.


хладагента (26,0 кПа).

ОХЛАДИТЕЛИ ФРЕОНОВЫЕ

- Для того чтобы определить мощность охладителя, необходимо от точки пересечения расхода воздуха ① с линией расчетной летней температуры (напр. +30 °C) провести вправо линию ④ до пересечения с влажностью наружного воздуха (напр. 50%) и поднять перпендикуляр на ось мощности охладителя (28,0 кВт) ⑤.
- Для определения расхода хладагента через охладитель необходимо опустить перпендикуляр () на ось расхода хладагента через охладитель (640 кг/час).
 Для определения падения давления хладагента в охладителе необходимо найти точку пересечения линии () с графиком потери давления и провести вправо перпендикуляр (), на ось падения давления хладагента (26,0 кПа).

хладагента (30,0 кПа).

403